
Code Execution:

- Source Code (SC): Human-readable instructions written in a programming language (e.g. C++, Java, etc.) forming the original version of the SW before compilation.

- Intermediate Representation (IR) / Intermediary Language: Code format between SC and Binary (e.g. Kotlin/Scala/Python/Java/Dex Bytecode, LLVM Bitcode for

C/C++, Objective-C, and Swift, Microsoft's Common Intermediate Language (CIL) for C#) that is designed to (i) be independent of any machine architecture (i.e.

portable), (ii) interpreted by a virtual machine (VM), or (iii) further compiled into Binary, often through a (e.g. VM’s) Just-In-Time (JIT) compiler (see below). JS

engines in web browsers convert JS to an AST (see below) and then to an internal Bytecode, which is typically JIT-compiled.

- Assembly Code/Language: Assembly code is a human-readable, low-level programming language that uses mnemonic codes and symbols to represent machine-

level instructions, registers, memory addresses, and other elements of a computer's architecture. The assembly language is dependent of the CPU architecture.

- Binary (Machine Code): Executable machine code consisting of zeros and ones, compiled from SC or IR (e.g. Bytecode), that can be directly executed by a

computer's CPU.

- Transpilation: Process of converting SC in one high-level programming language into another high-level programming language.

- Compilation: Compilation is the process through which source code written in a high-level programming language is transformed into IR or executable machine code

that a computer's CPU can understand and execute. Steps:

(i) Pre-processor (for C/C++ and objective-C): includes macros, files, compilation conditions, etc. in the SC);

(ii) Compiler:

(1) Lexical analysis (a scanner reads and breaks down SC into tokens);

(2) Syntax analysis (following the language’s grammar rules, a parser creates an Abstract Syntax Tree (AST), which represents the hierarchical

structure of the SC, with nodes that represent constructs like loops, conditionals, functions, etc.),

(3) Sematic analysis (checks the AST for errors),

(4) Intermediate code generation (i.e. translation into an IR),

(5) Optimization (remove unnecessary code and optimize code, e.g. remove or include loops),

(6) Code generation (for each instruction in the IR, the compiler generates a sequence of instructions in processor-specific Binary (e.g. Java,

C#, Objective-C and Swift using LLVM) or assembly (e.g. C/C++) code, e.g. how the CPU should store variables in its registers);

(iii) Assembler: If the output of the code generation step is assembly code (for C/C++, Rust, Fortran), the assembler translates such code into Binary (so-called

object code files). The assembler is typically absent in JIT compilers;

(iv) Linker: Assigns memory addresses to variables and functions and resolves references, i.e. if the output object code file uses a function or variable in

another object code file (e.g. OS native libraries or other files from the developer), the linker combines or links them in the final executable file:

(1) Static linking combines all the necessary libraries and object code files into a single executable at compile time. This includes code from the

developer as well as any third-party libraries that the program uses. Pro: self-contained / Con: larger file size.

(2) Dynamic linking links the native/third-party libraries at runtime rather than at compilation time, only references to the libraries are included in the

executable. Pro: smaller size file, easier updates, programs can share library files in memory / Con: if the library is not present, the program will not run.

- Loading: The loader, a specialized OS module, loads an executable file from disk into memory, along with dynamically-linked components. Once loaded, the loader

transfers control to the program’s logic, at which it begins execution.

- Ahead-of-Time (AOT) Compilation: AOT compilation happens before the program is run, often at build time (not at runtime). The source code or intermediate

representation (IR) is fully compiled into Binary, resulting in an executable file. Programs usually start faster, but are targeted to a specific CPU architecture, i.e. the

program is not portable.

- Just-In-Time (JIT) Compiler: JIT compilation happens during program execution, i.e. at runtime. The Bytecode or other IR is compiled into machine code on the fly,

as the program runs. Programs usually start slower, but the IR is portable across architectures and the compiler handles the generation of the Binary for the specific

platform.

- Interpretation: Process by which a programming language interpreter directly executes the instructions written in the SC without requiring them to be previously

compiled into Binary, e.g. the CPython interpreter of Python SC (process: SC to AST to Bytecode to interpretation by the Python Virtual Machine). That is, no

additional machine code instructions are required, such instructions already exist in the interpreter’s codebase (containing a “mapping” of SC-level to machine-level

instructions), the SC just tells the interpreter the instruction to trigger. The interpreter reads and executes the source code line by line, translating it into operations

that the computer can perform immediately. Provides portability but often run slower due to the interpretation overhead.

- Runtime: The environment in which a SW program executes. It consists of the SW stack that include the application code itself, libraries, variables that configure the

environment, and services (e.g. memory management, I/O, etc.) that allows the SW program to run. The runtime manages the lifecycle of the SW program: start,

execution, and termination.

Chip Architectures: It encompasses primarily the memory and CPU design and its Instruction Set Architecture (ISA):

- ISA: Definition of the binary machine code instructions that a CPU can execute. Assembly code is a human-readable representation of that collection of commands

that a particular CPU can execute (see above). The CPU is hardwired o recognize the binary pattern to execute the instruction.

- Multicore and Multithread: A chip could have multiple cores, i.e. CPUs, and each can hold the state (momentary status of a system, i.e. the values for all variables,

data, and configurations) of multiple threads (the smallest unit of processing that can be scheduled by an OS).

- System on a Chip: A System on a Chip (SoC) is an integrated circuit that combines all or most components of a computer or other electronic system onto a single

chip: CPU, memory, input/output ports, and often GPU, network connectivity modules, audio and video processing unites, power management circuits, neural

processing units, etc. Aims at improving performance while being power efficient. Dominates the mobile device market.

- Chipset: In traditional machines, instead of SoC, the chipset is an integrated circuit of the main board that manages the communication between high-speed devices

like the CPU, RAM, PCIe, and GPU (Northbridge) and lower-speed I/O peripherals like hard drives, USB ports, and expansion slots.

- ARM: Chip architecture that uses RISC (Reduced Instruction Set Computing) with a smaller set of simpler and faster instructions that do less work individually but

can be combined. ARM emphasizes power efficiency and thus dominates the mobile and embedded devices ecosystem, and it is making an entry into desktops and

servers, which typically run x86. ARM Holdings licenses this architecture to chip manufacturers.

- X86: Chip architecture hat uses CISC (Complex Instruction Set Computing) design, a large set of instructions that can perform complex tasks with a single

instruction. Used where power is a critical factor, like demanding workloads in enterprise use cases and gaming. It was primarily developed by Intel and AMD.

Browser Engine

CSS HTML JS & WA

Rendering Engine

CSS

Parser

HTML

Parser

CSSOM

Tree

DOM

Tree

Layout Engine

Blink (Chrome, Edge), Gecko (Firefox), WebKit

Static

Content

Dynamic

Content

JS Engine
(Interpreter & JIT)

Networking

OS

V8 (Ignition, TurboFan)

(Chrome/Edge),

JSCore/Nitro (Safari)

SpiderMonkey (Firefox)

JIT

Web Server

(Website, PWA)

Hardware

Cross-Platform Distribution

(by design) of end-user apps

Internet and

external media

Media Content

PWA APIs

Persistent storage,

push notifications,

full screen, work

offline, quick app

switch, inclusion on

the installed apps

menu, available

update icon

Application

Server

(3P app store/

web loading)

Computing Device

SC/Bytecode

(HTML, CSS, JS, WA)

SC (Swift)

SC (Java/Kotlin)
SC (C#/C++/.NET)

Application Server

IDE: Xcode

App Store Connect:

App Review

(LLVM)

Compiler

Binary

AOT

Native Distribution

of end-user apps

iOS/macOS App Store

Human Review

Automated Review

Automated

Review

User

Consent

macOS

sideloading

IDE: e.g. Android Studio, ...

Google Play Developer Console

(Java and

Dalvik)

Compiler

AOT

Android Runtime (based on Dalvik VM)

(Dex)

Bytecode

Compiler

JIT

Binary

Application Server

Google Review

Interpreter
‘hot spot’ Native

Cache
Compiler

AOT

Optional

Google Play Store

Sideloading

Native Deamons (background processes, e.g. initialize the system) and

Libraries (e.g. math, logging, cryptography)

Hardware Abstraction Layer (OEM device-specific features)

(Monolithic) Generic Core Kernel Module (KM) (Linux) – Google KM –

Vendor KM

(Mobile, Tablets, Embedded) Hardware (SoC ARM architecture –

Snapdragon (Qualcomm), Exynos (Samsung), Tensor (Google), …)

Binary

System Services (written in Java/Kotlin, e.g. an activity manager service for

multitasking capabilities, notifications manager, windows manager, etc.)

Compiler

AOT

Binary/IR

Hardware (System on a chip (SoC) ARM

architecture : “A” (Mobile, Tablets, TV) and “M”

series (Desktop, Laptop))

Windows Store

Microsoft Partner Centre

App Review Human Review

Automated Review

MSIX/AppX Package /

EXE/MSI for sideloadingIPA package

APK package

Signed (by Apple)
Signed (by Google)

Application Server

Signed (by Microsoft)

External

Media

Application

Server

(3P app store/

web loading)

User Consent

External

Media

Sideloading

IDE: e.g. Visual Studio, …

Web Browsers:

- Rendering Engine: Part of the browser engine that is responsible for parsing, translating (into the DOM and CSSOM) and interpreting HTML and CSS documents and

deciding how to display them (screen visual output). Interacts with the JS engine, etc.

- DOM: tree-like data structure that represents the structure of the document, including elements, attributes, and relationships between them. The HTML parser breaks the

HTML code into individual elements and creates corresponding DOM nodes for each element in the tree. The JS Engine (the JS code) also affects the DOM and CSSOM

trees.

- CSSOM: Like the DOM, it is a tree-like data structure that represents the styles and layout of a document.

- Layout engine: The rendering engine’s core component that calculates the positioning and sizing of visual elements. It ingests the DOM and CSSDOM to create layouts.

- JS engine: Executes JS code: parses JS into an AST, converts AST into Bytecode, and interprets it. For improved performance, frequently interpreted code is then compiled

into optimized Binary by a JIT compiler. The engine has a garbage collector to free up memory no longer in use. Additionally, it provides the runtime environment, with built-in

objects and functions that JS can use. Additionally, it provides a WA runtime, and developers can add JS code for interacting with the WA module. WA is typically included to

efficiently run games, real-time audio and video processing, cryptographic algorithms, emulators, machine learning, etc.

- Sandboxing: Applications in user space run in a particular memory space different to that assigned to the kernel. User space prevents apps from directly accessing the

kernel and HW. However, user apps can still interact with certain APIs, other processes, and user data. Restricting this access further is known as sandboxing, a more

restricted app environment enforced by the OS, which can be fine-tuned with admin/user consent to allow access to features, data, network, etc. (currently and typically in

mobile devices running iOS and Android). In web browsers, each web app can be executed in its own sandbox, and Web Assembly code can only perform instructions that

the browser allows.

Virtualization:

- Virtual Machine (VM): complete SW emulation of a physical computer with is own virtual CPU, memory, disk, network interface, etc.VMs are more resource intensive, but it

is more isolated by the hypervisor, i.e. running apps in a VM is typically more secure than in a sandbox. There are two types of VMs:

(1) System VM: Designed to virtualize an entire computer system’s OS and HW and are managed by a hypervisor.

(2) Process VM (application-level VM, like the ART runtime or the JVM): Runs a single process (application) as a platform-independent application that abstracts away

the underlying OS and HW details.

- Hypervisor: A VM monitor runs on the host machine (bare-metal like Xen, VMware ESXi) or OS (hosted like VirtualBox, VMware Workstation), while the VM is the guest OS

running on the hypervisor. A hypervisor is like an OS for OSes, coordinating their isolation, resource requirements, and execution with the underlying host OS.

- OS-Level Virtualization: Allows for multiple isolated user-space instances, which are often called containers. Containers are a lightweight, standalone, and executable

software package that includes everything needed to run a piece of software, including the code, runtime, system tools, libraries, and settings. Allows multiple isolated

applications to share the same OS kernel but run in separate user-space instances. They provide a consistent environment for applications across different environments.

Containers are more efficient and faster to start than virtual machines because they do not include an entire OS—only the application, libraries, runtime, system tools not in

the host system, settings (user input or env vars like PATH to find commands), config files (parameters and options that dictate the behavior of the application), and

dependencies. Suited for microservices architectures, cloud computing, and other use cases where scalability, efficiency, and rapid deployment are important. An exemplary

container tool is Docker, and solutions like Kubernetes helps with automating, deploying, scaling, and operating containers.

OS Kernels:

- Monolithic: A monolithic kernel is a type of OS architecture where the entire OS, including the scheduler, file system, device drivers, and memory management, is a single

large program (kernel) running in a single address space. All these components have direct access to the system hardware. This design allows for high performance and

efficient system calls since everything is closely integrated. E.g. Linux, FreeBSD.

- Microkernel: Runs the bare minimum amount of software required for the kernel to operate. In this design, the microkernel only includes core functionalities such as low-

level address space management, thread management, and inter-process communication (IPC) management. Other services like device drivers, file systems, network

stacks, and user services may run in user space or other kernel-level modules as separate processes. This separation can lead to better system stability and security, as a

failure in one component does not necessarily crash the entire system.

- Hybrid: The kernel provides more services in the kernel space than a pure microkernel but still tries to maintain separation for key components to increase stability and

maintainability. For example, some device drivers may run in kernel space for performance reasons, while others run in user space for increased security and stability.

Development:

- Cross-Platform Native Apps: There are frameworks like Reach Native that allow a developer to wrap a web application with native code to work in any platform, however,

the resulting apps are currently heavy and not necessarily as performant.

- Integrated Development Environment (IDE): is a software suite that combines common tools for software development, such as a code editor, compiler, debugger, and

build automation tools, into a single graphical user interface to facilitate the development process.

- Software Development Kit (SDK): collection of software tools like APIs specific to an OS/application/service, development tools (compilers, debuggers), libraries (your code

calls a library to use its functions), and documentation that developers use to create applications for specific platforms or frameworks (a framework calls your code). SDKs

can be integrated into IDEs, and some IDEs are designed to work with a specific SDK, e.g. Xcode and Android Studio.

If not signed by developer

If not signed by developer

(Monolithic) Linux Kernel –

Subsystems: Process scheduler,

memory management unit, virtual file

system, networking subsystem, Inter-

Process Communication Unit, drivers, …

(Laptop, Desktop, Server, Mobile,

Embedded) Hardware

System Libraries (APIs) – pre-compiled

functions for applications to interact with

the Kernel, e.g. glibc, POSIX Threads

System Utilities – Executable

preinstalled applications like the Shell

(i.e. UI to interact with the kernel via

command-line interface like Bash or

graphical user interface like GNOME),

that in turn, users can run from the Shell,

e.g. tar, emacs, shell (e.g. bash), grep,

package managers …

Application

Server

(3P app store)

web loading)

External

Media

SC (C#, C++, Java,

Kotlin, .NET, Swift…)

IDE: e.g. Vim,

Eclipse, Visual

Studio Code, …

Compiler

AOT

Binary/IR

APT, Pacman,

Tarballs,

AppImage, Snap, …

Packages

Runtime (rich support)

Data

Persistence
Cookies, local

storage

Binary

System Call Interface (APIs)

iOS / macOS Android

Android Framework (Java pre-compiled classes and interfaces upon which

apps are built, surfacing: Public (third party) / System (OEM/partners) APIs)

(Sandboxed) Web Browser

WA Runtime
(Interpreter & JIT)

Object Manager (Manages system resources represented as

objects, e.g. files, and threads. All other subsystems above

need to pass through the OM)

(Laptop, Desktop, Server, Tablets, Embedded) Hardware (x86

architecture – “Core i(5, 7)” – Intel, Ryzen – AMD, SoC ARM

architecture – Snapdragon – Qualcomm…)

Hardware Abstraction Layer

SC (TS) Transpiler

(to JS)

Windows 11

(NT Kernel)

Linux (Debian,

Arch, Red Hat, …)

Developer

SC

(C++/Rust)
Compiler

(to WA Bytecode)

V8 (Liftoff),

JSCore/Nitro

(WasmLLInt/FTL)

SpiderMonkey

(Baseline/Ion)

Core OS – (Hybrid) XNU Kernel (manages

system-level services like managing memory, the

file system, networking, etc.)

Core Services – Abstracted APIs (Provides

‘Core’ services like location, networking, data (for

developers to store ap data on device),

threading, WebKit etc.)

(Public) Android APIs

Unprivileged App

(Private) System APIs

Privileged/OEM Pre-Installed (System) App

User Consent

Binary

App

User

Consent

Media – Abstracted APIs for multimedia

functions/classes/frameworks for apps to use (

e.g. graphics, animation, video, audio, , etc.)

Cocoa (Touch - for iOS) – Abstracted

(public/entitled/privileged) APIs to UI-related

classes/methos, push notifications, handles user

input, App Store in-app purchases, web view,

etc.

Swift/Objective-C (iOS)

Runtime – (macOS offers

richer RT support)

Binary

Equivalent architecture but differences in

frameworks, app distribution, etc.

Unprivileged/Entitled

App

Apple Privileged

(Preinstalled) App

Windows Un/Privileged and Preinstalled Apps

Differences across Android OS OEMs are accommodated

typically using the HAL and the Android Framework

Different distributions use an

equivalent architecture.

(Kernel Mode) Drivers (Micro) Kernel

Executive Services

(I/O Manager, Security Reference Monitor, IPC Manager,

Virtual Memory Manager, Process Manager, Power Manager,

Window Manager, Plug and play manager, graphic device

interface, …)

.NET

Framework/Win32/POSIX

(Runtime)

Windows Runtime

Binary
Binary

Windows Store

Apps (WS Apps)
Universal Windows

Platform (UWP) Apps

Desktop

Apps

AOT

Human Review

Automated Review

https://source.android.com/docs/core/architecture
Gonzalo Munilla Garrido
©2025 Gonzalo Munilla Garrido. All rights reserved.

	Slide 1

